MEMORANDUM

TO: **Terry Taylor**

Anderson, Mulholland and Associates

FROM: R. Infante

FILE: JA93967

DATE: December 20, 2011

RE:

Data Validation

BMSMC: Building 5 Area, PR

SM04.00.06

Accutest Job Number: JA93967

SUMMARY

Full validation was performed on the data for four (4) soil samples, one (1) trip blank, (1) field blank, and one (1) equipment blank analyzed for selected volatile organic compounds using EPA method SW-846 8260B and four (4) soil samples, one (1) trip blank, (1) field blank, and one (1) equipment blank analyzed for alcohols (methanol and isopropyl alcohol) by EPA method SW-846 8015 (DAI). The samples were collected at the BMSMC Building 5 Area in Humacao, PR on December 6, 2011 and submitted to Accutest Laboratories that analyzed and reported the results under delivery group (SDG) JA93967.

The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: "USEPA Region 2, SOP HW-24, Standard Operating Procedure for the Validation of Organic Data Acquired using SW-846 Method 8260B (August 2009-Revision 2), the USEPA National Functional Guidelines for Low Concentration Organic Data Review (August 2009-Revision 2), the USEPA National Functional Guidelines for Organic Data Review for Low Concentration (SOP HW-13, August 2009-Revision 3) (noted herein as the "primary guidance document"). Also, QC criteria from "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846 (Final Update III, December 1996)," are utilized. The guidelines were modified to accommodate the non-CLP methodology. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

In general the data is valid as reported and may be used for decision making purposes. The data results are acceptable for use. Some of the results were qualified.

SAMPLES

The samples included in the review are listed below

FIELD SAMPLE ID	LABORATORY ID	ANALYSIS
I-6 (8.5 - 9.5)	JA93967-1	VOCs, ALCOHOLS
I-4 (9 - 10)	JA93967-2	VOCs, ALCOHOLS
I-6 (5 - 6)	JA93967-3	VOCs, ALCOHOLS
I-6 (5 - 6)D	JA93967-4	VOCs, ALCOHOLS
EB120611	JA93967-5	VOCs, ALCOHOLS
FB120611	JA93967-6	VOCs, ALCOHOLS
TB120611	JA93967-7	VOCs, ALCOHOLS

REVIEW ELEMENTS

Sample data were reviewed for the following parameters, where applicable to the method

- o Agreement of analysis conducted with chain of custody (COC) form
- o Holding time and sample preservation
- o Gas chromatography/mass spectrometry (GC/MS) tunes
- o Initial and continuing calibrations
- o Method blanks/trip blanks/field blank
- Surrogate spike recovery
- Matrix spike/matrix spike duplicate (MS/MSD) results
- o Internal standard performance
- o Field duplicate results
- o Laboratory control sample/laboratory control sample duplicate (LCS/LCSD) results
- o Quantitation limits and sample results

DISCUSSION

Agreement of Analysis Conducted with COC Request

Sample reports corresponded to the analytical request designated on the chain-of-custody form.

Holding Times and Sample Preservation

The cooler temperatures were within the QC acceptance criteria of 4° C \pm 2° C.

Sample preservation was acceptable.

Samples analyzed within method recommended holding time.

GC/MS Tunes

The frequency and abundance of bromofluorobenzene (BFB) tunes were within the QC acceptance criteria. All samples were analyzed within the tuning criteria associated with the method.

Initial and Continuing Calibrations

VOCs

The percent relative standard deviations (%RSDs) and response factors (RFs) of all target analytes were within the QC acceptance criteria in the initial calibration. Correlation coefficients (r²) of target analytes were within the QC acceptance criteria. Ongoing accuracy of the instrument was determined by the analysis of a continuing calibration standard. All initial and continuing calibrations met the acceptance criteria except for the following analytes:

DATE	LAB FILE ID#	CRITERIA OUT: %D	COMPOUND	AFFECTED SAMPLES
	========			
12/08/11	cc729-20	21.3	MIBK	JA93967-5; -6; -7
12/08/11	cc5012-20	24.1	Acetone	JA93967-1; -2

Qualify results (J) in affected samples.

Alcohols

The percent relative standard deviations (%RSDs) and response factors (RFs) of all target analytes were within the QC acceptance criteria in the initial calibration. Correlation coefficients (r²) of target analytes were within the QC acceptance criteria. Ongoing accuracy of the instrument was determined by the analysis of a continuing calibration standard. All initial and continuing calibrations met the acceptance criteria

Method Blank/Trip Blank/Field Blank

Target analytes were not detected in laboratory method blanks for VOCs and alcohols.

No target analytes (VOCs and alcohols) in the trip/ field/equipment blanks associated with this data set.

Surrogate Spike Recovery

The surrogate recoveries were within the laboratory QC acceptance limits in all samples analyzed for VOCs and alcohols.

MS/MSD

VOCs

Matrix spike was performed on samples JA93139-1MS/-1MSD (Aqueous); JA93656-19MS/-19MSD (Soil); JA93508-5MS/-MSD; and JA94317-2MS/-2MSD. Recoveries and RPD for the MS/MSD were within laboratory control.

Alcohols

Matrix spike was performed on samples JA93907-1MS/1MSD (Aqueous) and JA93968-1MS/-1MSD (Soil). Recoveries and RPD for the MS/MSD were within laboratory control limits.

Internal Standard Performance

VOCs

Samples were spiked with the method specified internal standard. Internal standard performance met the QC acceptance criteria in all sample analyses.

Laboratory/Field Duplicate Results

Field duplicate associated with data package were samples JA93967-3/JA93967-4 (VOCs and alcohols). RPD results were within laboratory and generally acceptable control limits.

LCS/LCSD Results

VOCs

. .

The laboratory analyzed one LCS (blank spike) associated with each matrix from this data set. The % recoveries of all spiked analytes were within the laboratory QC acceptance limits.

Alcohols

The laboratory analyzed one LCS (blank spike) associated with each matrix from this data set. The % recoveries of all spiked analytes were within the laboratory QC acceptance limits.

Quantitation Limits and Sample Results

Dilutions were not required with this data set except for the following samples (alcohols):

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION	
JA93967-5	2 X	None	
JA93967-6	2 X	None	
JA93967-7	2 X	None	

Calculations were spot checked.

More than 40 % RPD for detected Methanol concentrations between the two GC columns in samples JA93967-3 and -4. Results qualified as estimated (J).

Certification

The following samples JA93967-1; JA93967-2; JA93967-3; JA93967-4; JA93967-5; JA93967-6; and JA93967-7 were analyzed following standard procedures accepted by regulatory agencies. The quality control requirements met the methods criteria except in the occasions described in this document. The results are valid.

itael Infante

Ménuez

16 = 1888

Rafael Infante

Chemist License 1888

By

RS

Page 1 of 1

Client Sample ID: I-6 (8.5-9.5)
Lab Sample ID: JA93967-1

File ID

Y118315.D

SO - Soil

Date Sampled: 12/06/11 **Date Received:** 12/07/11

Matrix: Method:

SW846 8260B SW846 5035

DF

1

Percent Solids: 74.7

n/a

12/08/11 09:00

Project:

BMSMC, Building 5 Area, PR

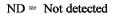
Prep Date Prep Batch Analytical Batch

VY5054

Run #1 Run #2

Initial Weight

Run #1 5.4 g


Run #2

VOA Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	\mathcal{L} dn	12	8.2	ug/kg	
71-43-2	Benzene	ND	1.2	0.16	ug/kg	
100-41-4	Ethylbenzene	ND	1.2	0.18	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	6.2	3.3	ug/kg	
108-88-3	Toluene	ND	1.2	0.47	ug/kg	
1330-20-7	Xylene (total)	ND	1.2	0.23	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	90%	-	67-13	31%	
17060-07-0	1,2-Dichloroethane-D4	86%		66-13	30%	
2037-26-5	Toluene-D8	97%		76-12	25%	
460-00-4	4-Bromofluorobenzene	96%		53-14	42%	
					HE AS	OCIADO DE

Analyzed

12/08/11

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Haef Infante Méndez H. – 1888

By

XPL

RL

n/a

MDL

Units

Page 1 of 1

Client Sample ID: I-6 (8.5-9.5) Lab Sample ID: JA93967-1

File ID

Matrix: Method:

SO - Soil

SW846-8015 (DAI)

DF

1

Date Sampled: 12/06/11 Date Received: 12/07/11

n/a

Q

Percent Solids: 74.7

Project:

BMSMC, Building 5 Area, PR

Prep Date Prep Batch Analytical Batch

GGH3918

Run #1 Run #2

Initial Weight

Compound

GH85761.D

Run #1 Run #2

CAS No.

5.0 g

67-63-0	Isopropyl Alcohol	ND	130	51	ug/kg
67-56-1	Methanol	ND	270	69	ug/kg

Analyzed

12/09/11

Result

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
111-27-3	Hexanol	75%		58-137%
111-27-3	Hexanol	76%		58-137%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

By

RS

Analyzed

12/08/11

Page 1 of 1

Client Sample ID: I-5 (9-10) Lab Sample ID:

File ID

Y118316.D

Matrix:

JA93967-2 SO - Soil

Date Sampled: 12/06/11 Date Received: 12/07/11

12/08/11 09:00

VY5054

Method:

SW846 8260B SW846 5035

Percent Solids: 71.5

n/a

Project:

BMSMC, Building 5 Area, PR

DF

1

Prep Date Prep Batch Analytical Batch

Run #1 Run #2

Initial Weight

Run #1

Run #2

5.7 g

VOA Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1 71-43-2	Acetone Benzene	23.3 J ND	12 1.2	8.1 0.16	ug/kg ug/kg	
100-41-4 108-10-1	Ethylbenzene 4-Methyl-2-pentanone(MIBK)	ND ND	1.2	0.18	ug/kg ug/kg	
108-88-3 1330-20-7	Toluene Xylene (total)	ND ND	1.2 1.2	0.46 0.23	ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi		
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	92% 87% 98% 93%		67-13 66-13 76-12 53-14	30% 25% 12% SOCI 30E ASOCI 41acl	ADO DE ALLA LA L

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: I-5 (9-10)

Lab Sample ID: Matrix:

JA93967-2

SO - Soil SW846-8015 (DAI)

BMSMC, Building 5 Area, PR

Date Sampled: 12/06/11 **Date Received:** 12/07/11

Percent Solids: 71.5

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 GH85762.D 1 12/09/11 XPL n/a n/a GGH3918

Run #2

Method:

Project:

Initial Weight

Run #1 5.0 g

Run #2

CAS No.	Compound	Result	RL	MDL	Units	Q
67-63-0 67-56-1	Isopropyl Alcohol Methanol	ND ND	140 280	53 72	ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
111-27-3	Hexanol	76%			37%	
111-27-3	Hexanol	72%			37%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: I-4 (5-6)

Lab Sample ID: JA

JA93967-3

Date Sampled: 12/06/11 **Date Received:** 12/07/11

Matrix: Method: SO - Soil SW846 8260B SW846 5035

Percent Solids: 77.9

Project:

BMSMC, Building 5 Area, PR

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	D190227.D	1	12/12/11	ET	12/08/11 09:00	n/a	VD7744
Run #2	D190158.D	1	12/10/11	ET	12/08/11 09:00	n/a	VD7741

	Initial Weight	Final Volume	Methanol Aliquot
Run #1	5.4 g	5.0 ml	1.0 ul
Run #2	5.4 g	5.0 ml	10.0 ul

98%

85%

VOA Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	115000 a	7400	4900	ug/kg	
71-43-2	Benzene	ND a	740	98	ug/kg	
100-41-4	Ethylbenzene	588000	7400	1100	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	240000	37000	19000	ug/kg	
108-88-3	Toluene	178000	7400	2800	ug/kg	
1330-20-7	Xylene (total)	2160000	7400	1400	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	100%	92%	67-1	31%	
17060-07-0	1,2-Dichloroethane-D4	99%	91%	66-1	30%	

115%

102%

(a) Result is from Run# 2

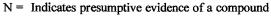
Toluene-D8

4-Bromofluorobenzene

2037-26-5

460-00-4

ND = Not detected


MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

By

XPL

n/a

Page 1 of 1

Client Sample ID: I-4 (5-6) Lab Sample ID:

JA93967-3 SO - Soil

Date Sampled: 12/06/11

n/a

Matrix:

ala standin

Date Received: 12/07/11

Method:

SW846-8015 (DAI)

DF

1

Percent Solids: 77.9

Project:

BMSMC, Building 5 Area, PR

Analytical Batch Prep Date Prep Batch

GGH3918

Run #1 Run #2

Initial Weight

GH85763.D

File ID

Run #1 5.1 g

Run #2

CAS No.	Compound	Result	RL	MDL	Units	Q
67-63-0 67-56-1	Isopropyl Alcohol Methanol ^a	62000 487 Ĵ	130 250	48 65	ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
111-27-3	Hexanol	100%		58-1	37%	
111-27-3	Hexanol	89%		58-1	37%	

Analyzed

12/09/11

(a) More than 40 % RPD for detected concentrations between the two GC columns.

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: I-4 (5-6)D

Lab Sample ID:

Matrix:

Method:

Project:

JA93967-4

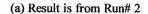
SO - Soil

SW846 8260B SW846 5035

BMSMC, Building 5 Area, PR

Date Sampled: 12/06/11

Date Received: 12/07/11


Percent Solids: 75.8

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	D190228.D	1	12/12/11	\mathbf{ET}	12/08/11 09:00	n/a	VD7744
Run #2	D190159.D	1	12/10/11	ET	12/08/11 09:00	n/a	VD7741

	Initial Weight	Final Volume	Methanol Aliquot
Run #1	5.5 g	5.0 ml	1.0 ul
Run #2	5.5 g	5.0 ml	10.0 ul

VOA Special List

CAS No.	Compound	Result	RL	MDL	Units
67-64-1	Acetone	95700 a	7600	5000	ug/kg
71-43-2	Benzene	ND a	760	100	ug/kg
100-41-4	Ethylbenzene	540000	7600	1100	ug/kg
108-10-1	4-Methyl-2-pentanone(MIBK)	258000	38000	20000	ug/kg
108-88-3	Toluene	210000	7600	2900	ug/kg
1330-20-7	Xylene (total)	2000000	7600	1400	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its
1868-53-7	Dibromofluoromethane	101%	92%	67-13	31%
17060-07-0	1,2-Dichloroethane-D4	99%	91%	66-13	30%
2037-26-5	Toluene-D8	112%	101%	76-12	25%
460-00-4	4-Bromofluorobenzene	101%	85%	53-14	42%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

By

XPL

Page 1 of 1

Client Sample ID: I-4 (5-6)D

Lab Sample ID: Matrix:

Again at a

JA93967-4

SO - Soil

SW846-8015 (DAI) BMSMC, Building 5 Area, PR **Date Sampled:** 12/06/11

Date Received: 12/07/11

Percent Solids: 75.8

File ID GH85764.D Run #1

DF 1

Analyzed 12/09/11

Prep Date n/a

Prep Batch n/a

Analytical Batch GGH3918

Run #2

Method:

Project:

Initial Weight

Compound

Run #1 Run #2

CAS No.

Result RL **MDL** Units Q

67-63-0 Isopropyl Alcohol 67-56-1 Methanol a

5.0 g

59700 130 50 521) 260 68

Run# 2

ug/kg ug/kg

Surrogate Recoveries CAS No.

Run# 1 96%

Limits

111-27-3 Hexanol 111-27-3 Hexanol 85% 58-137% 58-137%

(a) More than 40 % RPD for detected concentrations between the two GC columns, at ASCCIADO Q

TYG

n/a

Page 1 of 1

Client Sample ID: EB120611

File ID

4D18512.D

Lab Sample ID: JA93967-5

Matrix:

AQ - Equipment Blank

DF

1

SW846 8260B

Method: Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/06/11 Date Received: 12/07/11

V4D818

Percent Solids: n/a

Prep Date Prep Batch Analytical Batch Analyzed By

n/a

Run #1 Run #2

Purge Volume

Run #1 Run #2

5.0 ml

VOA Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1 71-43-2 100-41-4 108-10-1 108-88-3 1330-20-7	Acetone Benzene Ethylbenzene 4-Methyl-2-pentanone(MIBK) Toluene Xylene (total)	ND ND ND ND ND ND	10 1.0 1.0 5.0 1.0	7.6 0.22 0.21 1.2 0.15 0.17	ug/l ug/l ug/l ug/l ug/l ug/l	

12/08/11

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	109%		77-120%
17060-07-0	1,2-Dichloroethane-D4	113%		70-127%
2037-26-5	Toluene-D8	110%		79-120%
460-00-4	4-Bromofluorobenzene	105%		76-118%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: EB120611

Lab Sample ID: JA93967-5

Matrix: Method:

Project:

AQ - Equipment Blank SW846-8015 (DAI)

BMSMC, Building 5 Area, PR

Date Sampled: 12/06/11

Q

Date Received: 12/07/11 Percent Solids: n/a

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 Run #2	GH85712.D	2	12/08/11	XPL	n/a	n/a	GGH3916

CAS No.	Compound	Result	RL	MDL	Units
67-63-0 67-56-1	Isopropyl Alcohol Methanol	ND ND	100 200	30 46	ug/l ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
111-27-3	Hexanol	78%		48-1	50%
111-27-3	Hexanol	69%		48-1	

By

TYG

Page 1 of 1

Client Sample ID: FB120611

Lab Sample ID: JA93967-6

Matrix:

AQ - Field Blank Soil

DF

1

Date Received: 12/07/11

Prep Date

n/a

Date Sampled: 12/06/11

Method:

SW846 8260B

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, PR

Analyzed

12/08/11

Analytical Batch Prep Batch V4D818 n/a

Run #1 Run #2

Purge Volume

Run #1 Run #2

5.0 ml

File ID

4D18513.D

VOA Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1 71-43-2 100-41-4 108-10-1 108-88-3	Acetone Benzene Ethylbenzene 4-Methyl-2-pentanone(MIBK) Toluene	ND ND ND	10 1.0 1.0 5.0 1.0	7.6 0.22 0.21 1.2 0.15	ug/l ug/l ug/l ug/l ug/l	
1330-20-7 CAS No.	Xylene (total) Surrogate Recoveries	ND Run# 1	1.0 Run# 2	0.17 Limi	ug/l its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	107% 113% 110% 105%		77-1: 70-1: 79-1: 76-1	27% 20%	stact Infante Nendez 11 = 1888

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: FB120611

Lab Sample ID: JA93967-6

Matrix:

AQ - Field Blank Soil

Method:

SW846-8015 (DAI)

Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/06/11 Date Received: 12/07/11

Percent Solids: n/a

Q

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 Run #2	GH85713.D	2	12/08/11	XPL	n/a	n/a	GGH3916

CAS No.	Compound	Result	RL	MDL	Units
67-63-0	Isopropyl Alcohol	ND	100	30	ug/l
67-56-1	Methanol	ND	200	46	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
111-27-3	Hexanol	91%		48- 1	50%
111-27-3	Hexanol	86%		48-1	50%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

By

TYG

n/a

Page 1 of 1

Client Sample ID: TB120611

Lab Sample ID: JA93967-7

File ID

4D18514.D

JA9396/-/

Matrix: Method:

Project:

AQ - Trip Blank Soil

SW846 8260B

BMSMC, Building 5 Area, PR

DF

1

Analyzed

12/08/11

Date Sampled: 12/06/11 **Date Received:** 12/07/11

n/a

Percent Solids: n/a

Prep Date Prep Batch Analytical Batch

V4D818

Run #1 Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	7.6	ug/l	
71-43-2	Benzene	ND	1.0	0.22	ug/l	
100-41-4	Ethylbenzene	ND _	1.0	0.21	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	$_{ m ND}$ 1	5.0	1.2	ug/l	
108-88-3	Toluene	ND	1.0	0.15	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.17	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	108%		77-1	20%	
17060-07-0	1,2-Dichloroethane-D4	115%		70-13	27%	
2037-26-5	Toluene-D8	110%		79-1	20%	00110
460-00-4	4-Bromofluorobenzene	106%		76-1	18%	AL ASOURDO OF DE
					, ,	Hack Infante
					•	Hael Infante \@
						16 1888 /6
					\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: TB120611

Lab Sample ID: JA93967-7

Matrix: Method:

Project:

AQ - Trip Blank Soil

SW846-8015 (DAI)

BMSMC, Building 5 Area, PR

Date Sampled: 12/06/11 **Date Received:** 12/07/11

Q

Percent Solids: n/a

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	GH85714.D	2	12/08/11	XPL	n/a	n/a *	GGH3916
Run #2							

RL

Run# 2

MDL

30

46

Result

CAS No	Compound

67-63-0	Isopropyl Alcohol	ND	100
67-56-1	Methanol	ND	200

CAS No.	Surrogate Recoveries	Run#	1

111-27-3	Hexanol	89%	Ď
111-27-3	Hexanol	82%	

Limits
48-150%
48-150%

Units

ug/l

ug/l

dael Infante
Mendez
H 1888

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank
N = Indicates presumptive evidence of a compound

	is B		CHAI 2235 R								less i								of <u> </u>
		Te	1: 732-329						3480		8	737	942	1914		Bottle Order			
				www	. acute	st.com					Acode	at Quoin	<u>. </u>			Accutest Joi	" J/	939	167
Client / Reporting Information	Project Name:		Project	t inform	ation	•		- :	Early 1	10		Rec	ueste	Analys	s (see 1	EST COL	DE sheet)	-	Matrix Codes
Anderson Mulholland Assac., in	. Br	stol-h	jers Squ	ìbb	, Hu	M&CG	0 1	PR	e service	8008°	16/6	31							DW - Drinking Water GW - Ground Water WW - Water
110 corporate Park				Billing	Informati	ion (if diff	erent fr	om Re	port to)		200	8015R	۱ ۱	ĺ		1		1 1	SW - Surface Water SO - Soil
Street Agrees 110 Corporate Park Cay White Plains, NY 10601 Project Cordant 911-251-0100 Ext. 309	City		State	Compa	ny Name						2.5	∤ ∞							SL- Studge SED-Sediment
Project Contact E-mail	Project # Dil	Dag 5		Street A	\ddress						-24	3	1	1			-	1 1	OI - ON LIQ - Other Liquid AIR - Air
94-251-0400 Ext-304	Client Burchase			City			S	tate		Zio	_58	3 8	-2				-		SOL - Other Sold WP - Wipe
Terry Taylor		Cioa F		"			-			-	34	7	ड			1			FB-Fleid Blank EB-Equipment Blank
Sampler(s) Name(s) Terry Taylor/Nestor River	Project Manage	T	Collection	Attentio	n:					(0.2	- Ke	9	50						RB-Rinse Blank TB-Trip Blank
			1	Т	1		H_{-}		y \$		- F.	cha.	%						1
Sumple Field ID / Point of Collection	MECHIDI VILIF	Dete	Time	Samples		s of bottles	햧	Ş	08 NO 12	MEON	E	3			1			ΙÍ	LAB USE ONLY
-1 1-6 (8.5-9.5)	7	12/6/1	1000	TT	Swil	5	П	П	Z	3	×	×	X	\neg					F.S. i
-2 1-5 (9-10)		1	1100		1	5	П	П	2	3	×	X	X						1404
-3 1-4 (5-6)			1145	П	\sqcap	5		П	2	13	X	×	X						4965
-4 1-4 (5-6) D	\$		1115	\prod		4	П	П	1	3	X	X							985
-5 EB 12 0611			1200	П		¥2	2	П	TT	Ш	X	X							
-6 FB 12 06 11			1145			2	2	\coprod	\prod		×	X							
-7 TB 120611	*	<i>y</i>	1200	-	1	3	3	Ш		Ш	X	X							
				<u> </u>		L	Ш	Ц		Ш									
							Ш	Ц		Ш		<u> </u>							
							Ш		11	Ш			Ш						
			<u> </u>	<u> </u>			Ш		Ш	Ш	_								
	SOCIETY CONTRACTOR									Ш		<u> </u>	Ш						
Turnaround Time (Business days) Std. 16 Business Days	開発機能開始 Approved Dy (Acts		200	都織		StaC J) "A" (Sic		_	nformation	YASP Car	NO.	eta. Z	::: <u>::::</u>		Com	ments / Sp	ecial Instru	ctions	图1917 - 2017 (A)
Std. 10 Business Days (by Contract only)					Сопишен	ctal "B" (i	evel 23			YASP Cat				٦ .	7374	14211	934		
10 Day RUSH 5 Day RUSH				_	FULLT1 NJ Redu	(Level 3+	4}		_	ate Form			16	n 1/-2	& # 3	2003	177	u À	
2 Day EMERGENCY				_	Commen				H:						<u>.</u>	(C)	127	7.75	i
2 Oay EMERGENCY						Commerc			ts Only ts + QC Su	-			•361	למ	_				
Emirgency & Rusic VA data svalable VIA Lablink						NJ Reduc	ed = Re	ssuits 4	QC Sumo	nery + Par				,					
Refugiated by Farager	Sa Sa	Received By:		nented b	elow eac	n time si	Rainqu	chan ished i	Vi-		cluding o	ourier		ate Time:		Received By		- 17	ORGIN, Facility
1 1/4/24	i e	, ,	co exp		<u>.</u>		2		F20 E	<i>y</i>			$\overline{}$	<i>10ીના</i>	1715	2		₩/ <u>`</u>	
Refinquished by Samphe: Duth Time:		Received By: 3	,				Relinqu 4	ished S	jy:				- 1	Inte Time:		Received By	r.	U	

1 Mainta

436

149395". Charact Carrots Paper of 2

	Project Number:JA93967
	Date:12/06/2011
REVIEW OF VOLATILE ORGATINE following guidelines for evaluating volatile organics was actions. This document will assist the reviewer in using pro-	ere created to delineate required validation
decision and in better serving the needs of the data users. The USEPA data validation guidance documents in the following of HW-24, Validating Volatile Organic Compounds by GC/MS, S' 2), the USEPA National Functional Guidelines for Low/Mediu SOM01.2 SOP HW-33, August 2009 – Revision 2), the USEF	ne sample results were assessed according to order of precedence: USEPA Region 2, SOP W-846 Method 8260B (August, 2009-Revision m Concentration Organic Data Review (SOW
Data Review for Low Concentration (SOP HW-13, August, 2 Methods for Evaluating Solid Waste, Physical/Chemical Methods 8000/8015 are utilized. The Country the data review worksheets are from the primary guidance documents.	009-Revision 3). Also, QC criteria from "Test ethods SW-846 (Final Update IV, December QC criteria and data validation actions listed on cument, unless otherwise noted.
The hardcopied (laboratory name) _Accutest	data package received has been arized. The data review for VOCs included:
Lab. Project/SDG No.:JA93967	Sample matrix:Soil
No. of Samples:7	
Trip blank No.:JA93967-7	
Equipment blank No.:_JA93967-5	
·	
X Data Completeness	X Laboratory Control Spikes
X Holding Times N/A_ GC/MS Tuning	X Field Duplicates X Calibrations
N/A Internal Standard Performance	X Compound Identifications
X Blanks	X Compound Quantitation
X Surrogate Recoveries	X Quantitation Limits
X Matrix Spike/Matrix Spike Duplicate	
Overall Comments:_IPA_and_Methanol_by_SW846-801	5_(DAI)
Definition of Ouglifican	Name of the second
Definition of Qualifiers: J- Estimated results	
U- Compound not detected	
R- Rejected data	
UJ- Estimated nondetect	
Reviewer: Kafaul Auflutt	
Date:12/19/2011 ¹	

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
	,	
 		
	· · · · · · · · · · · · · · · · · · ·	
<u> </u>		
		
		_
-		-

All criteria were metX
Criteria were not met
and/or see below

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE ANALYZED	рН	ACTION
	<u> </u>			
A	il samples analyzed w	rithin the recommended	method	nolding time
			-	

Criteria

Aqueous samples – 14 days from sample collection for preserved samples (pH \leq 2, 4°C), no air bubbles.

Aqueous samples – 7 days from sample collection for unpreserved samples, 4°C, no air bubbles. Soil samples- 7 days from sample collection.

Cooler temperature (Criteria: 4 + 2 °C): 3°C - OK

Actions

If the VOCs vial(s) have air bubbles, estimate positive results (J) and reject nondetects (R).

If the % solids of soil samples is 10-50%, estimates positive results (J) and nondetects (UJ)

If the % solid of soil samples is < 10%, estimate positive results (J) and reject nondetects (R).

If holding times are exceeded but < 14 days beyond criteria, estimate positive results (J) and nondetects (UJ).

If holding times are exceeded but < 28 days beyond criteria, estimate positive results (J) and reject nondetects (R).

If holding times are grossly exceeded (> 28 days beyond criteria), reject all results (R).

If samples were not iced or if the ice were melted (> 10°C), estimate positive results (J) and nondetects (UJ).

		Criteria	All criteria were metN/A were not met see below
		Ontonia	Here not met 300 bolow
GC/MS TUNING			
The assessment standard tuning (•	letermine if the sample instrume	entation is within the
N/A_ The BFE	B performance results were re	viewed and found to be within th	e specified criteria.
N/A_ BFB tuni	ing was performed for every 1	2 hours of sample analysis.	
If no, use profes qualified or rejec	, ,	e whether the associated data	should be accepted,
List	the	samples	affected:
		· · · · · · · · · · · · · · · · · · ·	

If mass calibration is in error, all associated data are rejected.

All criteria were metX
Criteria were not met
and/or see below

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initia	ıl calibrat	ion:	11/12/11							
Dates of continuing calibration:12/08/1112/09/11										
Instrument II	Instrument ID numbers: GCGH									
Matrix/Level:	Matrix/Level:Aqueous/low									
DATE	LAB	FILE	CRITERIA OUT	COMPOUND	SAMPLES					
	ID#		RFs, %RSD, <u>%D</u> , r		AFFECTED					
	Initia	al and c	ontinuing calibration mee	et method performance cr	iteria					
	_									
				- 12						

Criteria

All RFs must be > 0.05 regardless of method requirements for SPCC.

All %RSD must be < 15 % regardless of method requirements for CCC.

All %Ds must be < 20% regardless of method requirements for CCC.

It should be noted that Region 2 SOP HW-24 does not specify criterion for the curve correlation coefficient (r). A limit for r of \geq 0.995 has therefore been utilized as professional judgment.

Actions

If any compound has an initial RF or a continuing RF of < 0.05, estimate positive results (J) and reject nondetects (R), regardless of method requirements.

If any compound has a %RSD > 15%, estimate positive results (J) and use professional judgment to qualify nondetects.

If any compound has a %RSD > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 20%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 20%, estimate positive results (J) and nondetects (UJ).

If any compound has a % D > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has r > 0.995, estimate positive results and nondetects.

A separate worksheet should be filled for each initial curve

All criteria were metX
Criteria were not met
and/or see below

V A. BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Laboratory blanks

DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
All_method			fic_criteria	
Field/Equipmen	t/Trip blank			
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
_No_target_ana package			d/equipment_blanks_an	alyzed_with_this_data
	-			

All criteria were metX	
Criteria were not met	
and/or see below	

VB. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

ALs = 10x the amount of common contaminants (methylene chloride, acetone, 2-butanone, and toluene)

ALs = 5x for any other compounds

Specific actions are as follows:

If the concentration is < sample quantitation limit (SQL) and \le AL, report the compound as not detected (U) at the SQL.

If the concentration is \geq SQL but \leq AL, report the compound as not detected (U) at the reported concentration.

If the concentration is \geq SQL and > AL, report the concentration unqualified.

Notes:

High and low level blanks must be treated separately

Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria.

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
				ļ 	
			<u> </u>		
<u> </u>					
				_	
	<u></u>				

All criteria were metX
Criteria were not met
and/or see below

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery. Matrix: solid/aqueous

SAMPLE ID		SURROGATE COMPOUND			ACTION
	1,2-DCA	DBFM	TOL-d8	BFB	
_All_surrogate_reco	veries_within	_laboratory_co	ontrol_limits		
SurrogateHexa	ne_				
QC Limits* (Aqueou	s)				
LL_to_UL_ QC Limits* (Solid-Lo		to_	to	to	
LL_to_UL_ QC Limits* (Solid-M	_ ´to	to_	to	to	
LL_to_UL	•	to_	to	to	
1,2-DCA = 1,2-Dichl DBFM = Dibromoflu		d4		d8 = Toluene-d8 Bromofluorobe	nzene

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 80 120 % for aqueous and 70 130 % for solid samples.

Actions:

QUALITY	%R < 10%	%R = 10% - LL	%R > UL
Positive results	J	J	J
Nondetects results	R	UJ	Accept

Surrogate action should be applied:

If one or more surrogate in the VOC fraction is out of specification, but has a recovery of > 10%.

If any one surrogate in a fraction shows < 10 % recovery.

All criteria were metX
Criteria were not met
and/or see below

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

1. MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed. List the %Rs, RPD of the compounds which do not meet the criteria.

Sample ID:JA93907-1 Sample ID:JA93968-1				'Level:AQUEO 'Level:SOIL		
MS OR MSD	COMPOUND	% R	RPD	QC LIMITS	ACTION	
_MS/MSD_recoveries_and_RPD_within_laboratory_control_limits						

Note: no action taken; spike amount low relative to sample concentration.

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J).

If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

All criteria were metX
Criteria were not met
and/or see below

VII. B MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD – Unspiked Compounds

It should be noted that Region 2 SOP HW-24 does not specify a MS/MSD criteria for the unspiked compounds in the sample. A %RSD of < 50% has therefore been utilized as professional judgment.

If all target analytes were spiked in the MS/MSD, this review element is not applicable.

List the %RSD of the compounds which do not meet the criteria.

Sample ID:			Matrix/Level/Unit:			
COMPOUND	SAMPLE CONC.	MS CONC.	MSD CONC.	% RSD	ACTION	

Actions:

^{*} If the % RSD > 50, qualify the positive result in the unspiked samples as estimated (J).

^{*} If the % RSD is not calculated (NC) due to nondetected value, use professional judgment to qualify the data.

All criteria were metX
Criteria were not met
and/or see below

VIII. LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

Where LCS spiked with the same analyte at the same concentrations as the MS/MSD? Yes or No. If no make note in data review memo.

List the %R of compounds which do not meet the criteria

	LCS ID	COMPOUND	% R	QC LIMIT
Recoverie	s_within_labora	atory_control_limits		
			-	
			, .	
	•			

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

All analytes in the associated sample results are qualified for the following criteria.

If 25 % of the LCS recoveries were < LL (or 70 %), qualify all positive results (j) and reject nondetects (R).

If two or more LCS were below 10 %, qualify all positive results as (J) and reject nondetects (R).

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? <u>Yes</u> or No. If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

		All criteria were metX Criteria were not met and/or see below
IX.	FIELD DUPLICATE PRECISION	
	Sample IDs:JA93967-3/-4	Matrix:_SOIL

Field duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information. Suggested criteria: RPD \pm 30% for aqueous samples, RPD \pm 50 % for solid samples. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
				<u> </u>	
	RPD) within laboratory a	nd generally acceptable	control li	mits
	-				_
					-
_					

Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

All criteria were metN/A	
Criteria were not met	
and/or see below	

X. INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

- * Area of +100% or -50% of the IS area in the associated calibration standard.
- * Retention time (RT) within 30 seconds of the IS area in the associated calibration standard.

DATE	SAMPLE ID	IS OUT	IS AREA	ACCEPTABLE ACTION RANGE	
		· · · · · · · · · · · · · · · · · · ·	,		
-					
				· · · · · · · · · · · · · · · · · · ·	

Actions:

1. IS actions should be applied to the compound quantitated with the out-of-control ISs

QUALITY	IS AREA < -25%	IS AREA = -25 % TO – 50%	IS AREA > + 100%
Positive results	J	J	J
Nondetected results	R	UJ	ACCEPT

If a IS retention time varies more than 30 seconds, the chromatographic profile for that sample must be examined to determine if any false positive or negative exists. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for the sample fraction.

All criteria were metX
Criteria were not met
and/or see below

XII. SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

JA93967-3

Methanol

RF = 13.07

[] = (5058)/(13.07)

= 386.99 OK

More than 40 % RPD for detected Methanol concentrations between the two GC columns in samples JA93967-3 and -4.

		All criteria were metX Criteria were not met and/or see below
XII. QUANTITATION	LIMITS	
A. Dilution perform	ed	
SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION
JA93967-5	2 x	None
JA93967-6	2 x	None
JA93967-7	2 x	None
3. Percent Solids		
List samples whi	ich have ≤ 50 % solids	
	_ 00 /0 00ma0	
Actions:		
	a soil sample is 10-50%, estimate po	ositive results (J) and nondetects (UJ)
If the % solids of (R)	a soil sample is < 10%, estimate pos	sitive results (J) and reject nondetects

	Project Number:JA93967
	Date:12/06/2011
REVIEW OF VOLATILE ORGATINE following guidelines for evaluating volatile organics was actions. This document will assist the reviewer in using production and in better serving the needs of the data users. The USEPA data validation guidance documents in the following HW-24, Validating Volatile Organic Compounds by GC/MS, State 2), the USEPA National Functional Guidelines for Low/Medius SOM01.2 SOP HW-33, August 2009 – Revision 2), the USEPA Data Review for Low Concentration (SOP HW-13, August, 2 Methods for Evaluating Solid Waste, Physical/Chemical Methods for Evaluating Solid Waste, Physical/Chemical Methods 1998)," specifically for Methods 8000/8260B are utilized. The on the data review worksheets are from the primary guidance of the solution of the data review worksheets are from the primary guidance of the solution of the data review worksheets are from the primary guidance of the solution of the data review worksheets are from the primary guidance of the solution of the solution of the data review worksheets are from the primary guidance of the solution of the solut	ANIC PACKAGE ere created to delineate required validation ofessional judgment to make more informed be sample results were assessed according to order of precedence: USEPA Region 2, SOF W-846 Method 8260B (August, 2009-Revision of Concentration Organic Data Review (SOW PA National Functional Guidelines for Organic 009-Revision 3). Also, QC criteria from "Tes othods SW-846 (Final Update IV, Decembe of QC criteria and data validation actions listed document, unless otherwise noted.
The hardcopied (laboratory name) _Accutest reviewed and the quality control and performance data summa	data package received has been arized. The data review for VOCs included:
Lab. Project/SDG No.:JA93967	Sample matrix:Soil
Field duplicate No.:JA93967-3/-4	
X Data CompletenessX Holding TimesX GC/MS TuningX Internal Standard PerformanceX BlanksX Surrogate RecoveriesX Matrix Spike/Matrix Spike Duplicate	X Laboratory Control SpikesX Field DuplicatesX CalibrationsX Compound IdentificationsX Compound QuantitationX Quantitation Limits
Overall Comments:_Selected_VOC's_by_SW846-8260B	
Definition of Qualifiers: J- Estimated results U- Compound not detected R- Rejected data UJ- Estimated nondetect Reviewer:	

DATA COMPLETENESS

, i ');

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED		
		<u> </u>		
	-			
	-			
		_		
-	_			

,				
		·		
		-		
		<u> </u>		
	-			

All criteria were metX
Criteria were not met
and/or see below

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE ANALYZED	pН	ACTION
All	samples analyzed w	 rithin the recommended	method	 holdina time

Criteria

Aqueous samples – 14 days from sample collection for preserved samples (pH \leq 2, 4°C), no air bubbles.

Aqueous samples – 7 days from sample collection for unpreserved samples, 4°C, no air bubbles. Soil samples- 7 days from sample collection.

Cooler temperature (Criteria: 4 + 2 °C): 3°C - OK

Actions

If the VOCs vial(s) have air bubbles, estimate positive results (J) and reject nondetects (R).

If the % solids of soil samples is 10-50%, estimates positive results (J) and nondetects (UJ)

If the % solid of soil samples is < 10%, estimate positive results (J) and reject nondetects (R).

If holding times are exceeded but < 14 days beyond criteria, estimate positive results (J) and nondetects (UJ).

If holding times are exceeded but < 28 days beyond criteria, estimate positive results (J) and reject nondetects (R).

If holding times are grossly exceeded (> 28 days beyond criteria), reject all results (R).

If samples were not iced or if the ice were melted (> 10°C), estimate positive results (J) and nondetects (UJ).

		All criteria we Criteria were not met se	ere metX ee below
GC/MS TUNING			
The assessment of the tuni standard tuning QC limits	ing results is to determine i	f the sample instrumentation is	within the
X The BFB performan	ce results were reviewed and	d found to be within the specified	criteria.
XBFB tuning was per	formed for every 12 hours of	sample analysis.	
If no, use professional judg qualified or rejected.	ment to determine whether	the associated data should be	accepted,
List	the	samples	affected:

If mass calibration is in error, all associated data are rejected.

All criteria were met
Criteria were not met
and/or see belowX

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:	_10/20/11	10/28/11	11/08/11	
Dates of continuing calibration:	12/08/11	12/09/11_12/12/11	12/08/11	
Instrument ID numbers:	GCMS4D_	GCMSD	GCMSY	
Matrix/Level:Aqueous/low				

DATE	LAB FILE ID#	CRITERIA OUT RFs, %RSD, <u>%D</u> , r	COMPOUND	SAMPLES AFFECTED
12/08/2011	cc729-20	21.3	MIBK	JA93967-5;-6;-7
		_	·	•
12/08/2011	cc5012-20	24.1	Acetone	JA93967-1;-2
		·		

Criteria

All RFs must be > 0.05 regardless of method requirements for SPCC.

All %RSD must be < 15 % regardless of method requirements for CCC.

All %Ds must be < 20% regardless of method requirements for CCC.

It should be noted that Region 2 SOP HW-24 does not specify criterion for the curve correlation coefficient (r). A limit for r of \geq 0.995 has therefore been utilized as professional judgment.

Actions

If any compound has an initial RF or a continuing RF of < 0.05, estimate positive results (J) and reject nondetects (R), regardless of method requirements.

If any compound has a %RSD > 15%, estimate positive results (J) and use professional judgment to qualify nondetects.

If any compound has a %RSD > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 20%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 20%, estimate positive results (J) and nondetects (UJ).

If any compound has a % D > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has r > 0.995, estimate positive results and nondetects.

A separate worksheet should be filled for each initial curve

All criteria were metX
Criteria were not met
and/or see below

V A. BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Laboratory blanks

DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
All_method			fic_criteria	
Field/Equipment	t/Trip blank			
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
_No_target_ana package			d/equipment_blanks_an	alyzed_with_this_data

All criteria were metX
Criteria were not met
and/or see below

VB. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

ALs = 10x the amount of common contaminants (methylene chloride, acetone, 2-butanone, and toluene)

ALs = 5x for any other compounds

Specific actions are as follows:

If the concentration is < sample quantitation limit (SQL) and \le AL, report the compound as not detected (U) at the SQL.

If the concentration is \geq SQL but \leq AL, report the compound as not detected (U) at the reported concentration.

If the concentration is \geq SQL and > AL, report the concentration unqualified.

Notes:

High and low level blanks must be treated separately

Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria.

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
		_			
				_	
			_		
	<u> </u>				

All criteria were metX
Criteria were not met
and/or see below

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery. Matrix: solid/aqueous

SAMPLE ID	SURROGATE COMPOUND				
1	1,2-DCA	DBFM	TOL-d8	BFB	
_All_surrogate_recov	veries_withir	n_laboratory_co	ontrol_limits		Sec. 6
			. , . , ,		
				· · · · · · · · · · · · · · · · · · ·	
	I. No. of the last			de constant de la con	1
QC Limits* (Aqueous	s)				
LL_to_UL		to_	to	to	
QC Limits* (Solid-Lov	w)				
LL_to_UL	to	to	to	to	
QC Limits* (Solid-Me			_ _		
LL_to_UL	•	to_	to	to	_ _
1,2-DCA = 1,2-Dichlo	oromethane-	-d4	TOL-d	l8 = Toluene-d8	
DREM - Dibromofluo				Promofluorobon	7000

BFB = Bromofluorobenzene

- QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- If QC limits are not available, use limits of 80 120 % for agueous and 70 130 % for solid samples.

Actions:

QUALITY	%R < 10%	%R = 10% - LL	%R > UL
Positive results	J	J	J
Nondetects results	R	UJ	Accept

Surrogate action should be applied:

If one or more surrogate in the VOC fraction is out of specification, but has a recovery of > 10%. If any one surrogate in a fraction shows < 10 % recovery.

All criteria were metX
Criteria were not met
and/or see below

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

1. MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed. List the %Rs, RPD of the compounds which do not meet the criteria.

Sample ID:JA93139-1 Sample ID:JA93656-19 Sample ID:JA93508-5 Sample ID:JA94317-2		Matrix/L Matrix/L	_evel:AQUEOUS _evel:SOIL _evel:SOIL _evel:SOIL		
MS OR MSD	COMPOUND	% R	RPD	QC LIMITS	ACTION
MS/MSD_recoveries_and_RPD_within_laboratory_control_limits					

Note: no action taken; spike amount low relative to sample concentration.

- * QC limits are laboratory in-house performance criteria. LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J).

If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

All criteria were metX
Criteria were not met
and/or see below

VII. B MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD - Unspiked Compounds

It should be noted that Region 2 SOP HW-24 does not specify a MS/MSD criteria for the unspiked compounds in the sample. A %RSD of < 50% has therefore been utilized as professional judgment.

If all target analytes were spiked in the MS/MSD, this review element is not applicable.

List the %RSD of the compounds which do not meet the criteria.

COMPOUND SAMPLE MS CONC. MSD CONC. % RSD ACCONC.	CTION
	,

Actions:

^{*} If the % RSD > 50, qualify the positive result in the unspiked samples as estimated (J).

^{*} If the % RSD is not calculated (NC) due to nondetected value, use professional judgment to qualify the data.

All criteria were metX_	
Criteria were not met	
and/or see below	

VIII. LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

Where LCS spiked with the same analyte at the same concentrations as the MS/MSD? Yes or No. If no make note in data review memo.

List the %R of compounds which do not meet the criteria

	LCS ID	COMPOUND	% R	QC LIMIT
Recoveri	es_within_labor	atory_control_limits	· · · · · · · · · · · · · · · · · · ·	
	·		· · ·	

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

All analytes in the associated sample results are qualified for the following criteria.

If 25 % of the LCS recoveries were < LL (or 70 %), qualify all positive results (j) and reject nondetects (R).

If two or more LCS were below 10 %, qualify all positive results as (J) and reject nondetects (R).

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? <u>Yes</u> or No. If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

		All criteria were metX Criteria were not met and/or see below
IX.	FIELD DUPLICATE PRECISION	
	Sample IDs:JA93967-3/-4	Matrix:_SOIL

Field duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information. Suggested criteria: RPD \pm 30% for aqueous samples, RPD \pm 50 % for solid samples. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION		
	_						
	DDC	 	nd gonorally accontable	oonfrol li	mita		
	RPD within laboratory and generally acceptable control limits						
	_						

Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

All criteria were metX_	
Criteria were not met	
and/or see below	

X. INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

- * Area of +100% or -50% of the IS area in the associated calibration standard.
- * Retention time (RT) within 30 seconds of the IS area in the associated calibration standard.

DATE	SAMPLE ID	IS OUT	IS AREA	ACCEPTABLE RANGE	ACTION					
_Internal_st	_Internal_standard_area_within_laboratory_control_limits									
	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·						
				· · · · · · · · · · · · · · · · · · ·						
Actions:				· · · · · · · · · · · · · · · · · · ·						

1. IS actions should be applied to the compound quantitated with the out-of-control ISs

QUALITY	IS AREA < -25%	IS AREA = -25 %	IS AREA > + 100%
		TO – 50%	
Positive results	J	J	J
Nondetected results	R	UJ	ACCEPT

If a IS retention time varies more than 30 seconds, the chromatographic profile for that sample must be examined to determine if any false positive or negative exists. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for the sample fraction.

All criteria were metX	
Criteria were not met	
and/or see below	

XII. SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

JA93967-3

ACETONE

RF = 0.064

[] = (4268)(50)/(288513)(0.064)

= 11.56 ppb OK

All criteria were metX
Criteria were not met
and/or see below

XII.		NTIT	ΛTIC	114	INAID	re
All.	WUA	AN LLL	AIIC	ИΝΙ	_11711 1	0

A. Dilution performed

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION
	_	
		<u> </u>

В.	Percent Solids		
	List samples which have ≤ 50 % solids		
			- —

Actions:

If the % solids of a soil sample is 10-50%, estimate positive results (J) and nondetects (UJ) If the % solids of a soil sample is < 10%, estimate positive results (J) and reject nondetects (R)